
GenerIter
Release 0.0.1

generiter@gmx.com

Feb 15, 2021

CONTENTS:

1 Preface 1
1.1 A Few Words From One Creator Of The GenerIter . 1

2 Introduction 3
2.1 Overview . 3

3 Installation 5
3.1 Installing on macOS . 5
3.2 Installing on Debian-derived Linux . 6
3.3 Installing on Arch Linux . 6
3.4 Installing on Windows . 6
3.5 Advanced Installation Notes . 7

4 Tutorials 9
4.1 Basic Workflow . 9
4.2 Advanced Grooving . 18
4.3 Roll Your Own Algorithm . 21

5 Console Apps 25
5.1 genercat . 25
5.2 generinv . 26
5.3 generiter . 26
5.4 generalg . 26

6 Reference 29
6.1 GenerIter . 29

7 Indices and tables 43
7.1 Contacts . 43

Python Module Index 45

Index 47

i

ii

CHAPTER

ONE

PREFACE

1.1 A Few Words From One Creator Of The GenerIter

By Thomas Park, 10th Feb 2021

It is now time to deploy the GenerIter, and I wanted to share some thoughts with folks.

My name is Thomas Park– the GenerIter was originally a console Python application called “RoboDJ”. I created
the application to help me with composing music– I was tired of some of the hard labor of trimming and preparing
samples, only to combine them in all of the familiar ways.

I went to Python to help, which is a language I learned in a Launchcode code camp in 2018.

While creating the original code, I made some breakthroughs– perhaps the most exciting was when the code could
literally create and output thousands of tracks per hour. As neat as that was, I was aware that I had stepped on some
folk’s shoes.

There are those who disavow all of Modern Art as a waste. There are many who do not love technology, and shun its
use. And there are some who feel that music made largely by a processor must be bad and harmful to this world.

Sadly, the weekend of this release, my Mother appears to be dying, with little hope of recovery, due to a number of
causes. She did not love hospitals, and in her 70s, did not have even a checkup for her last seven years. As a result,
when they finally had her in to treat her for Covid, they found symptom after symptom of other issues– too many, alas,
for a favorable diagnosis.

We live in a changing world, and when we need help, I feel that we should ask for it. I know that my Mother did not
approve of my recent coding and musical developments. I did not approve of her lack of care. There was no lack of
love, only understanding.

The GenerIter, so well-developed by Jeremy Pavier, already does more than I expected it to, and better. I cannot thank
him enough for working so many hours at no charge to help achieve this dream. I would say it has also become his.

This tool goes with sadness, too, out to my mother, a lovely woman who will never understand what it does, will never
approve of it, or anything like it. Sad but true that the world moves on without us, regardless of our feelings. I choose
to embrace the future, and try to make it better.

And I hope that this Module comes to enhance the lives of many, easing a process that can be unnecessarily complex,
and opening the doors to new sounds and new combinations.

Thank you for your time, Thomas Park Co-creator of the GenerIter

1

GenerIter, Release 0.0.1

2 Chapter 1. Preface

CHAPTER

TWO

INTRODUCTION

2.1 Overview

The GenerIter package is a software development kit (SDK) with which Python coders can manipulate sampled
sounds programmatically to create new generative and iterative compositions.

The SDK is designed in such a way that it does all the heavy lifting of organising sample library contents according
to whatever criteria makes sense to the composer, and then applying generative algorithms to those libraries using
randomised or directed selection techniques.

The objective of the SDK is to give the composer some powerful assistance without constraining or dictating the
creative aspects of their projects. To that end, you will find the SDK fairly lightweight in its implementation, but very
configurable and agnostic about workflows and processes.

One of the key features of the package is that, although supplied with a set of example processors and algorithms for
the novice user to start getting quick results, there is a simple facility that allows the composer-programmer to extend,
replace, organise and control whatever algorithmic processes they wish to apply to their sample library external to the
example processors we provide.

3

GenerIter, Release 0.0.1

4 Chapter 2. Introduction

CHAPTER

THREE

INSTALLATION

3.1 Installing on macOS

GenerIter requires Python 3.6+ but older versions of macOS only had Python 2.7. First determine if you’re running
3.x or 2.x: Open up the command line via the Terminal application which is located at Applications -> Utilities ->
Terminal.

In the terminal, at the $ prompt, enter the following command, and look at the output:

$ python --version
Python 2.7.17

If this is version 2.x, continue, if it’s 3.x, skip down to ‘Installing via pip’

3.1.1 Installing Python 3.x

To update macOS’s version of Python, we’ll use the tool [Homebrew](brew.sh), to do this, cut and paste the following
command into your terminal, and press ‘Enter’

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
→˓install.sh)"

This will install Apple’s Xcode commandline tools and other required software, it could take up to 5 minutes to
complete. When this is done, initialize and test that homebrew is installed and working:

brew doctor

If that’s successful, use homebrew to install Python 3.9:

brew install --build-from-source python@3.9

This command will take longer than the last one, as it’s going to build Python from source.

5

GenerIter, Release 0.0.1

3.1.2 Installing via pip

Now we’ll use pip, a package manger for Python, to install generiter

pip3 install generiter

3.2 Installing on Debian-derived Linux

Generiter requires Python 3.6+ which most recent version of Linux will have. First determine if you’re running 3.x or
2.x: Open up terminal application in Linux, and prompt, enter the following command, and look at the output:

$ python --version
Python 2.7.17

If you see a version of Python starting with a 2, such as Python 2.7.10, then try the same command using python3
instead of python, it’s possible both will be installed.

If it’s not and you only have version 2.x, continue, if it’s 3.x, skip down to ‘Installing generiter via pip’

GNU Debian Linux and Ubuntu Linux

Install Python 3.x as defined at [Install Python](https://installpython3.com/linux/), by using the deadsnakes PPA:

sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt-get update
sudo apt install python3.8

Now we’ll use pip, a package manger for Python, to install generiter

pip3 install generiter

3.3 Installing on Arch Linux

Install Python 3.x via pacman:

pacman -S python3

Now we’ll use pip, a package manger for Python, to install generiter

pip3 install generiter

3.4 Installing on Windows

Install Python 3.x as defined at [Install Python](https://installpython3.com/windows/)

Open Powershell, and run the following command:

pip3 install generiter

6 Chapter 3. Installation

https://installpython3.com/linux/
https://installpython3.com/windows/

GenerIter, Release 0.0.1

3.5 Advanced Installation Notes

The GenerIter package uses pydub, a dependency which should be satisfied during the package installation.

However, pydub has a partial dependency on FFmpeg

At the moment we only use WAV format audio throughout, so the package will work without this dependency and
only generate a benign warning. Ultimately we wish to be able to transparently convert into and out of other formats
(e.g. mp3, FLAC, etc.). In order to use that functionality, you will need to install FFmpeg on your machine later.

The source for the GenerIter package can also be found on GitHub.

3.5. Advanced Installation Notes 7

https://github.com/jiaaro/pydub/blob/master/API.markdown
https://ffmpeg.org/
https://ffmpeg.org/
https://github.com/GridPresence/GenerIter

GenerIter, Release 0.0.1

8 Chapter 3. Installation

CHAPTER

FOUR

TUTORIALS

Important Note :

This module currently depends on the pydub module for manipulating audio segments in memory. The nature of
the pydub implementation is such that it can hog memory, particularly if your algorithm doesn’t clear redundant
references to “old” immutable audio segments. This means that there may be occasions where you can be throwing
“out of memory” exceptions.

This is not a GenerIter defect, but a pydub design flaw.

As a GenerIter user, it should be possible to ameliorate this problem by using smaller samples, sample sets and reduc-
ing the configuration workload. Future enhancements to GenerIter include a plan to replace pydub with something
that manages memory better and minimises the likelihood of hitting this problem.

4.1 Basic Workflow

This text uses MacOS/Linux-style pathnames generally. The code has been written such that it should also support
DOS-style paths in a Windows-based command shell. Key differences will be highlighted when they occur.

To illustrate this workflow with a worked example, I am going to create a very small sample library under /tmp/samples
using the WAV samples provided Archive.org. Note that the “GenerIter_Demo_Track” files should be moved into a
different directory outside the /tmp/samples tree as they are not used here.

The core GenerIter process is illustrated in the diagram:

9

https://archive.org/details/GenerIter

GenerIter, Release 0.0.1

The basic workflow breaks down into 4 phases:

1. Categorising the sample library

2. Creating the sample inventory

3. Creating the composer control file

4. Generating music

4.1.1 Categorising the sample library

This first phase assumes the you starts with an unstructured set of samples in youre directory.

To make the most out of the inventory classification system, it helps if the samples are organised in subdirectories
named after the categories the composer finds useful. These category names can be clompletely arbitrary, but for this
illustration I am going to use musical voice/instrument category specifiers like “Drums”, “Bass”, “Synths”, etc.

The good news is that these categories can be specified at any level in your sample tree and don’t require the “Drums”
samples, for example to all be in a single directory.

The genercat utility is a helper command that allows the composer to allocate sets of sample files into named subdi-
rectories, where the names of those directories will ultimately correspond to the categories in the inventory.

To illustrate this workflow with a worked example, I am going to create a very small sample library under /tmp/samples
using the WAV samples I downloaded from Archive.org:

cd /tmp/samples
.

Bass_1.wav
Bass_2.wav
Bass_3.wav
Beats_1.wav
Beats_2.wav

(continues on next page)

10 Chapter 4. Tutorials

genercat_cli.html
https://archive.org/details/GenerIter

GenerIter, Release 0.0.1

(continued from previous page)

Beats_3.wav
Drone_1.wav
Drone_2.wav
Drone_3.wav
Guitar_1.wav
Guitar_2.wav
Guitar_3.wav
Organ_1.wav
Organ_2.wav
Organ_3.wav
Pepper_1.wav
Pepper_2.wav
Pepper_3.wav
Saxophone_1.wav
Saxophone_2.wav
Saxophone_3.wav

This is then categorised, thus:

genercat -C Bass
genercat -C Beats
genercat -C Drone
genercat -C Guitar
genercat -C Pepper
genercat -C Organ
genercat -C Saxophone

resulting in a tree structure that looks like:

.
Bass

Bass_1.wav
Bass_2.wav
Bass_3.wav

Beats
Beats_1.wav
Beats_2.wav
Beats_3.wav

Drone
Drone_1.wav
Drone_2.wav
Drone_3.wav

Guitar
Guitar_1.wav
Guitar_2.wav
Guitar_3.wav

Organ
Organ_1.wav
Organ_2.wav
Organ_3.wav

Pepper
Pepper_1.wav
Pepper_2.wav
Pepper_3.wav

Saxophone
Saxophone_1.wav
Saxophone_2.wav

(continues on next page)

4.1. Basic Workflow 11

GenerIter, Release 0.0.1

(continued from previous page)

Saxophone_3.wav

4.1.2 Creating the sample inventory

Once you are satisfied that your sample libraries are organised in the way you want, it is time to create the inventory
file from which you will be selecting samploes with your algorithms.

To do this you use the generinv utility in the directory in which you intend to run the generiter command eventually.

Top Tip - It’s a good idea to keep your inventory and composer files away from your sample library, just to avoid
cluttering the library up with spurious files.

For this simple demonstration, assuming your sample tree is rooted in /tmp/samples the basic commands would look
something like:

cd $HOME
generinv -I /tmp/samples -o inventory

This creates an inventory.json file that will look like:

{
"Bass":{

"/tmp/samples/Bass/Bass_1.wav":true,
"/tmp/samples/Bass/Bass_2.wav":true,
"/tmp/samples/Bass/Bass_3.wav":true

},
"Beats":{

"/tmp/samples/Beats/Beats_1.wav":true,
"/tmp/samples/Beats/Beats_2.wav":true,
"/tmp/samples/Beats/Beats_3.wav":true

},
"Drone":{

"/tmp/samples/Drone/Drone_1.wav":true,
"/tmp/samples/Drone/Drone_2.wav":true,
"/tmp/samples/Drone/Drone_3.wav":true

},
"Guitar":{

"/tmp/samples/Guitar/Guitar_1.wav":true,
"/tmp/samples/Guitar/Guitar_2.wav":true,
"/tmp/samples/Guitar/Guitar_3.wav":true

},
"Organ":{

"/tmp/samples/Organ/Organ_1.wav":true,
"/tmp/samples/Organ/Organ_2.wav":true,
"/tmp/samples/Organ/Organ_3.wav":true

},
"Pepper":{

"/tmp/samples/Pepper/Pepper_1.wav":true,
"/tmp/samples/Pepper/Pepper_2.wav":true,
"/tmp/samples/Pepper/Pepper_3.wav":true

},
"Saxophone":{

"/tmp/samples/Saxophone/Saxophone_1.wav":true,
"/tmp/samples/Saxophone/Saxophone_2.wav":true,
"/tmp/samples/Saxophone/Saxophone_3.wav":true

(continues on next page)

12 Chapter 4. Tutorials

generinv_cli.html

GenerIter, Release 0.0.1

(continued from previous page)

}
}

The Windows equivalent will look something like:

{
"Bass":{

"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Bass\\Bass_1.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Bass\\Bass_2.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Bass\\Bass_3.wav":true

},
"Beats":{

"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Beats\\Beats_1.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Beats\\Beats_2.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Beats\\Beats_3.wav":true

},
"Drone":{

"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Drone\\Drone_1.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Drone\\Drone_2.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Drone\\Drone_3.wav":true

},
"Guitar":{

"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Guitar\\Guitar_1.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Guitar\\Guitar_2.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Guitar\\Guitar_3.wav":true

},
"Organ":{

"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Organ\\Organ_1.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Organ\\Organ_2.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Organ\\Organ_3.wav":true

},
"Pepper":{

"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Pepper\\Pepper_1.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Pepper\\Pepper_2.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Pepper\\Pepper_3.wav":true

},
"Saxophone":{

"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Saxophone\\Saxophone_1.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Saxophone\\Saxophone_2.wav":true,
"C:\\Users\\mysti\\Desktop\\Sample_Sounds\\Saxophone\\Saxophone_3.wav":true

}
}

All the paths are absolute, which makes the inventory file fully movable to anywhere in your filesystem.

4.1.3 Creating the composer control file

The first composer control file is going to be very simple. So, fire up the text editor of your choice and create a file
called compose.json with the following content:

{
"Basic" : {

"beatsbassdrone" : {
"tracks" : 20,
"repeats" : 6

(continues on next page)

4.1. Basic Workflow 13

GenerIter, Release 0.0.1

(continued from previous page)

}
},
"Globals" : {

"destination" : "<your path here>"
}

}

The Globals parameters are those that are literally global to the generiter instance when it runs. In this simplified
form, you will need to supply it with the path of the directory into which your generated tracks will be created.

For Linux/MacOS users this will look like:

"Globals" : {
"destination" : "/my/output/path"

}

Whereas Windows users will need to escape the backslashes in the DOS form:

"Globals" : {
"destination" : "c:\\my\\output\\path"

}

The top part of the composition file translates into

• “Basic” - use the Basic processor as defined in the generiter.processor library

• “beatsbassdrone” - use the beatsbassdrone method of the Basic processor (in pure Python terms this equates to
calling generiter.processor.Basic.beatsbassdrone() through configuration)

• “tracks” - create 20 tracks in this run

• “repeats” - use up to 6 internal loop repeats for each track (controls the length of each output track for this
method)

4.1.4 Generating music

Finally, we get to generate some tracks, and for this we use generiter thus:

generiter -L inventory.json -C compose.json

You can then watch as your tracks are generated into a time- and date-stamped subdirectory of your target directory.
This allows you to do multiple runs without accidentally overwriting any earlier works.

Your compositions will come out looking like:

20210117130701
Basic

Basic_beatsbassdrone_00.wav
Basic_beatsbassdrone_01.wav
Basic_beatsbassdrone_02.wav
Basic_beatsbassdrone_03.wav
Basic_beatsbassdrone_04.wav
Basic_beatsbassdrone_05.wav
Basic_beatsbassdrone_06.wav
Basic_beatsbassdrone_07.wav
Basic_beatsbassdrone_08.wav
Basic_beatsbassdrone_09.wav

(continues on next page)

14 Chapter 4. Tutorials

generiter_cli.html

GenerIter, Release 0.0.1

(continued from previous page)

Basic_beatsbassdrone_10.wav
Basic_beatsbassdrone_11.wav
Basic_beatsbassdrone_12.wav
Basic_beatsbassdrone_13.wav
Basic_beatsbassdrone_14.wav
Basic_beatsbassdrone_15.wav
Basic_beatsbassdrone_16.wav
Basic_beatsbassdrone_17.wav
Basic_beatsbassdrone_18.wav
Basic_beatsbassdrone_19.wav

As you will see, the naming of the files and the organisation of them follows the specification of the compose.json file,
making them easy to navigate and understand. As your compositions become bigger and more complex, this will also
allow you observe/extract interesting intermediate forms.

4.1.5 The Next Iteration

That’s all well and good, but it’s only using 3 of the voices in your inventory. Let’s explore a slightly more flexible
algorithm voices3, which allows you to arbitrarily assign three difference voices from your inventory and then use
those in exactly the same way.

Edit your compose.json to look like:

{
"Basic" : {
"beatsbassdrone" : {

"tracks" : 20,
"repeats" : 6

},
"voices3" : {

"tracks" : 20,
"repeats" : 6,
"voices" : ["Beats",

"Bass",
"Guitar"]

}
},

"Globals" : {
"destination" : "<your path here>"

}
}

As you can see, all that’s happened is that a new voices3 method of Basic is being invoked and that method can be
configured here to use an arbitrary set of 3 of the available voices; although in this example I have only replaced the
Drone voice with Guitar.

Running exactly the same generiter command

generiter -L inventory.json -C compose.json

yields output arranged thus:

20210117132943/
Basic

Basic_beatsbassdrone_00.wav

(continues on next page)

4.1. Basic Workflow 15

GenerIter, Release 0.0.1

(continued from previous page)

Basic_beatsbassdrone_01.wav
Basic_beatsbassdrone_02.wav
Basic_beatsbassdrone_03.wav
Basic_beatsbassdrone_04.wav
Basic_beatsbassdrone_05.wav
Basic_beatsbassdrone_06.wav
Basic_beatsbassdrone_07.wav
Basic_beatsbassdrone_08.wav
Basic_beatsbassdrone_09.wav
Basic_beatsbassdrone_10.wav
Basic_beatsbassdrone_11.wav
Basic_beatsbassdrone_12.wav
Basic_beatsbassdrone_13.wav
Basic_beatsbassdrone_14.wav
Basic_beatsbassdrone_15.wav
Basic_beatsbassdrone_16.wav
Basic_beatsbassdrone_17.wav
Basic_beatsbassdrone_18.wav
Basic_beatsbassdrone_19.wav
Basic_voices3_00.wav
Basic_voices3_01.wav
Basic_voices3_02.wav
Basic_voices3_03.wav
Basic_voices3_04.wav
Basic_voices3_05.wav
Basic_voices3_06.wav
Basic_voices3_07.wav
Basic_voices3_08.wav
Basic_voices3_09.wav
Basic_voices3_10.wav
Basic_voices3_11.wav
Basic_voices3_12.wav
Basic_voices3_13.wav
Basic_voices3_14.wav
Basic_voices3_15.wav
Basic_voices3_16.wav
Basic_voices3_17.wav
Basic_voices3_18.wav
Basic_voices3_19.wav

So, we have not only created a set of voices3-derived compositions, we have also created a new set of beatsbassdrone-
derived compositions. These are not copies of the previous set, but a completely new set using the same algorithm, but
with different random selections and decisions.

At this point, when you listen to all the outputs, you may start to hear a certain same-y quality to some of the outputs.
It should be clear that, even with these very basic algorithms, the diversity and variation in your compositions is going
to depend very much on the breadth and size of the sample sets in your libraries.

16 Chapter 4. Tutorials

GenerIter, Release 0.0.1

4.1.6 Layering and sequencing

Having done some variations on the Basic algorithms (and there are more to play with when you check the code
documentation), you might think that it’s time to add some complexity to the music you are creating.

GenerIter obviously provides facilities for generating different layers as separate outputs. However, it would be good
if there was an algorithmic way of combinging these outputs into newer, richer compositions. So that feature is also
built into the system.

Here’s an example composition file that illustrates how this is done.

{
"Basic" : {

"voices3" : {
"tracks" : 20,
"repeats" : 3,
"voices" : [

"Beats",
"Bass",
"Drone"

]
}

},
"Solo" : {

"generic" : {
"tracks" : 20,
"voice" : "Guitar"

}
},
"Mix" : {

"multitrack" : {
"tracks" : 20,
"voices" : {

"Basic" : 12,
"Solo" : -6,
"Solo" : -6,
"Solo" : -6

}
}

},
"Globals" : {

"destination" : "<your path here>",
"sequence" : [

"Basic",
"Solo",
"Mix"

]
}

}

The first section for the Basic processor should look familiar.

Two new processors are invoked:

• Solo : a draft generic mechanism for using a single voice and generating solo or lead lines.

• Mix : a simple multitrack mixer for creating a combined output and setting relative gain levels for the disparate
voices in the mix.

To understand the change to the Globals section, a bit of understanding of the software structure is required and a

4.1. Basic Workflow 17

GenerIter, Release 0.0.1

short lesson in some features of Python data structures.

When you created the inventory.json file in the earlier tutorial, what actually happened was that an internal Python
data structure was converted into a JSON string representation and then written to your disc. This is done because, as
well as being easily read by humans, it is also easily read by Python. This means that the entire data structure can be
recreated in memory, with all of its earlier properties, by reading and parsing the file. This a very easy operation in
Python.

So, when you set the -L option on the generiter command, that’s what happens; an object of class Selector is created
and used throughout the process lifetime.

One of the features of this design is that as the generative process continues and writes out compositions, each of those
compositions is also registered in the Selector object in memory. This is done precisely so that later iterations can use
the outputs from earlier iterations.

However, this throws up a problem in the way Python Python deals with the different built-in data structures in use.
When you express a list, the ordering is embedded in the definition of that list: [0, 1 ,2, 3, 4] which means that if
the software iterates over the list, the contents will be accessed in the index order in a predictable fashion. The same
is not so for a dictionary: { “a” : 0, “b” : 1, “c” : 2, . . . }. The order in which entries are iterated is not guaranteed
to be in any useful order, either order of insertion or sorted.

This means that if the Mix algorithm depends on the existence of previously-generated Basic and Solo compositions,
it is necessary to tell the overall process that it needs to process the algorithms in the correct order such that when
the Mix algorithm wants to select material, the material exists for it to be able to do so. This is achieved using the
“sequence” field in the “Globals” setting. Implementated as a list, this order is guaranteed.

The Mix configuration also illustrates the application of output balancing. Each of the chosen voices has a mute
vale expressed in dB. For this example all the tracks are unmuted. This might result in some clipping in the output,
depending on the source material. This is where you can literally implement the mix levels to get the balance you
want.

Beta Testers Note: This is a change of config format for the Mix.multitrack module from that with which you were
originally testing. The voices are now represented as a mapping dictionary between the voice and a level rather than
as a simple list of voices.

4.2 Advanced Grooving

For this tutorial, it will be assumed that the user has compiled their own inventory of samples. The voicings given here
are purely illustrative and should be adapted to fit the user’s own library organisation.

This tutorial will use two new algorithms Basic.groove and Solo.multivoice_serial_ordered. It also reuses the
Mix.multitrack algorithm to integrate each component part back into a whole.

4.2.1 Creating the composer control file

The new composer control file is more complex, but follows a layering pattern with which you should now be familiar:

{
"Basic" : {

"groove" : {
"tracks" : 50,
"cycle" : 4,
"voices" : [

"Bass",
"Beat",

(continues on next page)

18 Chapter 4. Tutorials

GenerIter, Release 0.0.1

(continued from previous page)

"Percussion",
"Pad"

]
}

},
"Solo" : {

"multivoice_serial_ordered" : {
"tracks" : 50,
"voices" : [

"Synth",
"Synth",
"Piano",
"Vox",
"Synth",
"Synth"

]
}

},
"Mix" : {

"multitrack" : {
"tracks" : 30,
"voices" : {

"Basic" : 12,
"Solo" : -3

}
}

},
"Globals" : {

"destination" : "<your path here>",
"tsize" : "s",
"sequence" : [

"Basic",
"Solo",
"Mix"

]
}

}

4.2.2 Global variables

The Globals section has a new parameter which allows you to roughly control the overall length of the tracks in your
compositions. These are specified in t-shirt sizes and are currently defined in seconds thus:

TSHIRT = {
"s" : 180,
"m" : 300,
"l" : 480,
"xl" : 780,
"xxl" : 1260,
"xxxl" : 2640

}

So a tsize of “s” represents a soft threshold of 3 minutes +/- 10% (calculated at runtime). This is a “soft” threshold
because the final length of any track will be determined by the width of the segments used and the number of repeats
that can be concatenated before the overall track length exceeds the limit. It is a very approximate threshold and

4.2. Advanced Grooving 19

GenerIter, Release 0.0.1

merely represents a promise to keep the track within an order of magnitude. Hence the use of a t-shirt sizing metaphor
for approximation.

As before, the sequence list specifies the order in which to execute the layers, so that outputs from early layers are
available to be selected into the final micx layers.

4.2.3 Basic.groove

The Basic.groove algorithm is used to form a rhythmic backbone to the composition. The configuration here will
look very similar to the Basic.voices3 used in the earlier tutorial, but the algorithm is more sophisticated and general
purpose.

The number of voices can be 3 or more. For this example I am using 4, which we can think of as A, B, C and D
corresponding to their declaration position in the configuration list.

Segments A and B are randomly selected from their inventory categories. These are then length-aligned. That is,
whichever is the shorter of the two is padded with exactly the right amount of silence to make the frame lengths of
both segments equal. These are then overlayed to form a composite rhythmic unit referred to as AB.

The basic rhythmic beat is created by replicating a sequence of these AB segments end-to-end until the track size limit
is surpassed. This is the groove_base.

The cycle parameter specifies the number of these AB components tahe represent a higher level repetition unit called
the cycle (obviously).

Subsequent voices are also length-aligned (or curtailed) to match the size of the AB unit. A new segment, groove_layer
is created, into which the later voices C, D, etc. are injected in a cyclic sequence, aligned precisely to the groove_base
cycles and beats.

Finally, the groove_base is overlayed with the groove_layer to create a composite whole track which is output as an
audio file.

20 Chapter 4. Tutorials

GenerIter, Release 0.0.1

4.2.4 Solo.multivoice_serial_ordered

This algorithm, as its name should indicate, is just one possible approach amongst a whole forest of potential variants.
As such it is provided merely as an exemplar and starting point for the user’s own explorations into algorithmic
creativity.

Each of the voices in the configuration list is randomly selected from their inventory categories. At this point we have
a fixed selection of solo voices for the rest of the track composition.

For each voice in sequence, the selected segment is padded with silence both front and back in a randomised non-
uniform manner. The resulting segment is appended to the solo track and the sequence cycled until the track length
exceeds its soft limit. This will be of the same order of magnitude as the limit used in the Basic.groove algorithm, but
not identical or coupled in any way.

The solos are then output as audio files, existing independently.

Clearly, for an “s” sized track, setting 24 voices in the configuration is likely to result in a lot of redundant voicings
that just never appear in the final track. Conversely, building an “xxl” solo out of just one or two voices will get very
repetitive and uninteresting over time.

4.2.5 Mix.multitrack

This performs the same function it did in the earlier basic workflow tutorial, combining randomly selected tracks from
the generated Basic and Solo populations and generating audio output files of the results. The level setting values are
in dB, applied to the corresponding voice: the Basic voice is boosted by 12 dB, the Solo is muted by 3 dB. These
values represent a reasonable median starting point, but they will undoubtedly need adjusting for your own sample
library.

4.3 Roll Your Own Algorithm

(For this tutorial, it is assumed that the user has a familiarity with Python programming terms and idioms.)

One of the design objectives of this module is to provide a framework into which users can extend and customise the
algorithmic capabilities of the GenerIter command without touching the supplied code.

This is achieved through the use of the GenerIter.Process as an abstract base class from which new processors can be
derived, encompassing the use of the Selector and Config classes and drivine the generiter app purely through data
configuration.

For this tutorial a dummy Process-derived class will be implemented to illustrate the mechanism. For real generative
audio algorithmic development, the user is encouraged to examine the existing algorithms and processors, and read the
pydub API documentation, to understand and use the example implementations as references for further development.
Feel free to cut and paste implementation fragments if they are useful.

4.3.1 Create your library module

In this example we want to create a new algorithm. Let’s call it local01.

To do this, the algorithm needs to be attached to a Process-derived object, which we’ll call Myprocess.

In order to access the object module at runtime, we need to put it in a library module. We’ll call this mylib.

Pythonistas will be able to do this easily enough from the description above, but even then they are likely to make
errors. To simplify the process and minimise basic system errors,the GenerIter module comes with its own code
generator for local algorithm development, called generalg.

4.3. Roll Your Own Algorithm 21

GenerIter, Release 0.0.1

To achieve the structures described above:

generalg -L mylib -M myprocess -A local01

will ensure that a directory named testlib is created.

Within mylib, the app ensures that the __init__.py and Myprocess.py files exist.

Note : Only the library name is case-sensitive. All other parameters will be pushed into lower case and the module
name will be capitalized.

The Myprocess.py will contain:

from GenerIter.process import Process

class Myprocess(Process):

def __init__(self):
super().__init__()

def local01(self):
print("Executing local01")
Your code goes here

4.3.2 Testing your module

This is easy to test.

Create a simple test.json file:

{
"Myprocess" : {

"local01" : {
}

}
}

In the following example, the name of the inventory file is irrelevant - although it has to be there to satisfy the
constraints of the application, no selection processing is specified so no output files will get generated.

To test the new library module:

generiter -L someinventoryfile.json -C test.json -P mylib

This should produce the following output:

mylib
Process()
Myprocess.local01()
Executing local01

Congratulations!!! your new library and modules work.

It’s not very interesting at the moment, but you have created a new algorithm. All you need to do now is fill in the
missing code.

22 Chapter 4. Tutorials

GenerIter, Release 0.0.1

4.3.3 Further expansions

The generalg utility is designed so that you can add new algorithms to existing processors:

generalg -L mylib -M myprocess -A local02

Thus:

from GenerIter.process import Process

class Myprocess(Process):

def __init__(self):
super().__init__()

def local01(self):
print("Executing local01")
Your code goes here

def local02(self):
print("Executing local02")
Your code goes here

Add new processor modules to your library:

generalg -L mylib -M anotherprocess -A algorithm

Or create a completely new library:

generalg -L newlib -M anotherprocess -A algorithm

However it is NOT sufficiently smart to prevent you adding a repeat copy of the same algorithm name to the same
processor module:

generalg -L newlib -M anotherprocess -A algorithm
generalg -L newlib -M anotherprocess -A algorithm

Will create:

from GenerIter.process import Process

class Anotherprocess(Process):

def __init__(self):
super().__init__()

def algorithm(self):
print("Executing algorithm")
Your code goes here

def algorithm(self):
print("Executing algorithm")
Your code goes here

Which will throw a fatal Python exception when you try to use it.

4.3. Roll Your Own Algorithm 23

GenerIter, Release 0.0.1

24 Chapter 4. Tutorials

CHAPTER

FIVE

CONSOLE APPS

5.1 genercat

usage: genercat [-h] -C C [-D D]

optional arguments:
-h, --help show this help message and exit
-C C Category search pattern
-D D Destination category name

The genercat console application is a helper utility for managing sample libraries. It can be used when you have a
large, flat directory full of sample files and wish to apply some structure on the collection. This is particularly useful
when you wish to create different voices or subcategories in you inventory (see below). You can use the app to assign
sets of samples into a named subdirectory.

So, for example, if you wished to assign all your Piano-related content into a Piano subdirectory:

genercat -C Piano

will create a Piano subdirectory (unless it already exists) in the current directory, and then move all the sample files
whose name contains the string “Piano” into that subdirectory.

A more flexible use case is where you may want to organise different sample file types under a common category.
One example would be a directory that contains a range of samples relating to different percussive sounds which you
wanted to group together:

genercat -D Percussion -C Drum
genercat -D Percussion -C Hi-Hat
genercat -D Percussion -C Snare
genercat -D Percussion -C Topper
genercat -D Percussion -C Riser

This takes all the files that match to patterns defined by the -C specifier and puts them in a common destination
subdirectory as defined by the -D specifier.

The rule is that if only -C is specified, the destination subdirectory mirrors that selection. Otherwise, the files are
moved into the subdirectory specified by -D.

This means that:

genercat -C Drum
genercat -D Drum -C Drum

are functionally identical.

25

GenerIter, Release 0.0.1

5.2 generinv

usage: generinv [-h] [-I I] [-L L] -o O

optional arguments:
-h, --help show this help message and exit
-I I Source for inclusion in searches
-L L Source for inclusion in loads
-o O Output file root name

5.3 generiter

usage: generiter [-h] [-I I] [-L L] -C C

optional arguments:
-h, --help show this help message and exit
-I I Source for inclusion in searches
-L L Source selection file for inclusion in loads
-C C Configuration file for algorithms

5.4 generalg

usage: generalg [-h] -A A -M M -L L

optional arguments:
-h, --help show this help message and exit
-A A Algorithm name
-M M Module name
-L L Library name

This is a helper utility that generates code stubs when you want to create a local module with hooks onto which new
algorithms can be developed.

Thus:

generalg -L testlib -M testmod -A testalg

will ensure that a directory named testlib is created.

Within testlib, the app ensures that the __init__.py and Testmod.py files exist.

Note : Only the library name is case-sensitive. All other parameters will be pushed into lower case and the module
name will be capitalized.

The Testmod.py will contain:

from GenerIter.process import Process

class Testmod(Process):

def __init__(self):
super().__init__()

(continues on next page)

26 Chapter 5. Console Apps

GenerIter, Release 0.0.1

(continued from previous page)

def testalg(self):
print("Executing testalg")
Your code goes here

5.4. generalg 27

GenerIter, Release 0.0.1

28 Chapter 5. Console Apps

CHAPTER

SIX

REFERENCE

6.1 GenerIter

6.1.1 GenerIter package

Subpackages

GenerIter.app package

Submodules

GenerIter.app.algorithm module

App that is used to generate code stubs for local algorithmic development.

usage: generalg [-h] -A A -M M -L L

optional arguments:
-h, --help show this help message and exit
-A A Algorithm name
-M M Module name
-L L Library name

Thus:

generalg -L testlib -M testmod -A testalg

will ensure that a directory named testlib is created.

Within testlib, the app ensures that the __init__.py and Testmod.py files exist.

The Testmod.py will contain:

from GenerIter.process import Process

class Testmod(Process):

def __init__(self):
super().__init__()

def testalg(self):

(continues on next page)

29

GenerIter, Release 0.0.1

(continued from previous page)

print("Executing testalg")
Your code goes here

class GenerIter.app.algorithm.Algorithm
Bases: GenerIter.app.clibase.CLIBase

alg_template = '\n def {ALG}(self):\n print("Executing {ALG}")\n # Your code goes here\n\n'

build_class()

build_lib()

build_method()

klass_template = 'from GenerIter.process import Process\n\nclass {KLASS}(Process):\n\n def __init__(self):\n super().__init__()\n\n'

parseArguments()
There is no implementation of this function for the abstract base class.

Raises GenerIter.excepts.GINotImplementedErr –

process()
There is no implementation of this function for the abstract base class.

Raises GenerIter.excepts.GINotImplementedErr –

GenerIter.app.categorise module

App that is used to subcategorise a sample set according to a string search parameter.

The app will iterate through all the files in the current directory looking for files containing the category search pattern
substring (the -C argument).

If the category search pattern is found in a filename, the file is moved into a subdirectory, which will be created if
necessary. The name of the subdirectory will either correspond to the category search string or is specified by the -D
argument.

Thus:

genercat -C Drums

and

genercat -C Drums -D Drums

are functionally identical, whereas

genercat -C Drums - D Percussion

puts the same files into a different subdirectory.

class GenerIter.app.categorise.Categorise
Bases: GenerIter.app.clibase.CLIBase

parseArguments()
Parses the CLI arguments for the app.

30 Chapter 6. Reference

GenerIter, Release 0.0.1

usage: genercat [-h] -C C [-D D]

optional arguments:
-h, --help show this help message and exit
-C C Category search pattern
-D D Destination category name

process()
The execution function for the app.

The basic flow:

1. A destination subdirectory is created, unless it already exists.

2. The app then examines all the files in the current directory.

3. If the specfied category search substring is found in the filename, that file is moved into the subdirec-
tory.

GenerIter.app.clep_algorithm module

GenerIter.app.clep_algorithm.main()
The Command Line Entry Point for the packaged GenerIter.app.inventory app.

GenerIter.app.clep_categorise module

GenerIter.app.clep_categorise.main()
The Command Line Entry Point for the packaged GenerIter.app.categorise app.

GenerIter.app.clep_generator module

GenerIter.app.clep_generator.main()
The Command Line Entry Point for the packaged GenerIter.app.generator app.

GenerIter.app.clep_inventory module

GenerIter.app.clep_inventory.main()
The Command Line Entry Point for the packaged GenerIter.app.inventory app.

GenerIter.app.clibase module

Abstract base class for Command Line Interface apps in the GenerIter ecosystem

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

class GenerIter.app.clibase.CLIBase
Bases: object

parseArguments()
There is no implementation of this function for the abstract base class.

Raises GenerIter.excepts.GINotImplementedErr –

6.1. GenerIter 31

GenerIter, Release 0.0.1

process()
There is no implementation of this function for the abstract base class.

Raises GenerIter.excepts.GINotImplementedErr –

GenerIter.app.generator module

App to generate music.

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

class GenerIter.app.generator.Generator
Bases: GenerIter.app.clibase.CLIBase

loadConfiguration()

loadSelections()

parseArguments()
There is no implementation of this function for the abstract base class.

Raises GenerIter.excepts.GINotImplementedErr –

process()
There is no implementation of this function for the abstract base class.

Raises GenerIter.excepts.GINotImplementedErr –

GenerIter.app.inventory module

App to catalogue and select source files into a configuration.

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

class GenerIter.app.inventory.Inventory
Bases: GenerIter.app.clibase.CLIBase

parseArguments()
There is no implementation of this function for the abstract base class.

Raises GenerIter.excepts.GINotImplementedErr –

process()
There is no implementation of this function for the abstract base class.

Raises GenerIter.excepts.GINotImplementedErr –

Module contents

GenerIter.processor package

Submodules

GenerIter.processor.Basic module

Generator class for some basic Process-based algorithms for rhythmic generation.

32 Chapter 6. Reference

GenerIter, Release 0.0.1

class GenerIter.processor.Basic.Basic
Bases: GenerIter.process.Process

beatsbassdrone()
This is a developmental prototype variant of the algorithm01 in the original DJProcessor code.

As the name suggests, it expects to find categories in the sample inventory mapped into the Beats, Bass
and Drone voices. Otherise this algorithm will fail.

Warning: This is example code used during early development, and should really only be used for
reference and study.

groove()
The Basic.groove algorithm is used to form a rhythmic backbone to a composition. This algorithm attempts
to make sensible alignment choices for the samples in use. It is considered a production algorithm.

The number of voices can be 3 or more. In this example we are using 4, which we can think of as A, B, C
and D corresponding to their declaration position in the configuration list.

Segments A and B are randomly selected from their inventory categories. These are then length-aligned.
That is, whichever is the shorter of the two is padded with exactly the right amount of silence to make
the frame lengths of both segments equal. These are then overlayed to form a composite rhythmic unit
referred to as AB.

The basic rhythmic beat is created by replicating a sequence of these AB segments end-to-end until the
track size limit is surpassed. This is the groove_base.

The cycle parameter specifies the number of these AB components tahe represent a higher level repetition
unit called the cycle (obviously).

Subsequent voices are also length-aligned (or curtailed) to match the size of the AB unit. A new segment,
groove_layer is created, into which the later voices C, D, etc. are injected in a cyclic sequence, aligned
precisely to the groove_base cycles and beats.

Finally, the groove_base is overlayed with the groove_layer to create a composite whole track which is
output as an audio file.

6.1. GenerIter 33

GenerIter, Release 0.0.1

Parameters

• tracks (int) – number of times the process is to run.

• voices (list) – list of voice categories to select and use in the track

• cycle (int) – length of a repeat cycle in terms of groove_base beats

Example:

{
"Basic" : {

"groove" : {
"tracks" : 50,
"cycle" : 4,
"voices" : [

"Bass",
"Beat",
"Percussion",
"Pad"

]
}

}
}

Raises GenerIter.excepts.GIParameterErr –

voices()
This developmental prototype algorithm uses the same algorithm as voices3, but allows the user to desig-
nate the 3 or more voices to be used in the compose file.

Warning: This is example code used during early development, and should really only be used for
reference and study.

voices3()
This developmental prototype algorithm uses the same algorithm as beatsbassdrone, but allows the user to
designate the 3 voices to be used in the compose file.

The number of voices allowed is hard-coded to 3 only.

Warning: This is example code used during early development, and should really only be used for
reference and study.

voices_shifted()
This algorithm uses the same algorithm as voices, but implements a sequential shift as each new voice is
incorporated.

Warning: This is example code used during early development, and should really only be used for
reference and study.

34 Chapter 6. Reference

GenerIter, Release 0.0.1

GenerIter.processor.Mix module

Generator class for some Process-based mixing algorithms.

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

class GenerIter.processor.Mix.Mix
Bases: GenerIter.process.Process

multitrack()

GenerIter.processor.Solo module

Generator class for some Process-based soloing algorithms.

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

class GenerIter.processor.Solo.Solo
Bases: GenerIter.process.Process

SOLOMAP = [{'upper': 10000, 'variation': (800, 2400), 'fades': 100, 'back_silence': 4000}, {'upper': 60000, 'variation': (8000, 24000), 'fades': 3000, 'front_silence': 20000, 'back_silence': 40000}, {'upper': 60000, 'variation': (20000, 36000), 'fades': 3000, 'front_silence': 60000, 'back_silence': 40000}, {'upper': 10000, 'variation': (200, 800), 'fades': 10, 'front_silence': 60000, 'back_silence': 40000, 'reps': (5, 30)}]

generic()

multivoice_serial_ordered()

Module contents

Submodules

GenerIter.config module

Class to configure generator algorithms.

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

class GenerIter.config.Config(confpath=None)
Bases: object

load(inpath)

subcats()

GenerIter.excepts module

Domain-specific Exception classes for GenerIter

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

exception GenerIter.excepts.GIErr
Bases: Exception

Base class for domain-specific exceptions.

exception GenerIter.excepts.GINotImplementedErr
Bases: GenerIter.excepts.GIErr

Class for propogating not implemented errors.

6.1. GenerIter 35

GenerIter, Release 0.0.1

exception GenerIter.excepts.GIParameterErr
Bases: GenerIter.excepts.GIErr

Class for propogating parameter errors.

exception GenerIter.excepts.GIResourceErr
Bases: GenerIter.excepts.GIErr

Class for propogating resource errors.

exception GenerIter.excepts.GIValidationErr
Bases: GenerIter.excepts.GIErr

Class for propogating validation errors.

GenerIter.factory module

Class that constructs the correct processor object.

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

class GenerIter.factory.ProcessorFactory(vname, pname, fname, procmodule)
Bases: object

configure(invent, config, dest, form, size)

property klass

property method

process()

setMethod(fname)

GenerIter.process module

Abstract base class for all Process-based generator algorithms.

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

class GenerIter.process.Process(prefix=None)
Bases: object

This is the abstract base class from which all other processors are derived.

As such it implements the core interface as well as several important generic helper services which can simplify
the derived algorithm implementations.

SUPPORTED_FORMATS = ['wav']

TSHIRT = {'l': 480, 'm': 300, 's': 180, 'xl': 780, 'xxl': 1260, 'xxxl': 2640}

bracket(segment, frontmult=1.0, backmult=1.0)

configure(inventory, configuration, destination, forrmat, tsize)

deamplify(segment, limits)

declick(segment, value=10)
This is a helper function with which a fade/rise can be applied to each end of an AudioSegment to reduce
the potential for ‘clicking’ when they are connected end-to-end.

Can also be used, with longer fade times, if large track fades are required.

36 Chapter 6. Reference

GenerIter, Release 0.0.1

Parameters value (int) – number of milliseconds across which the segment will be faded
from full gain to zero (typically 10 seems to work well).

Returns AudioSegment

default()

getsegment(sample, limits, fade)

getsegmentm(sample, muted, fade)

intwidth(value)

padtolength(segment, length, fader, front=False)

supported(value)

threshold()

write(algorithm, counter, source)

GenerIter.selector module

Class to catalogue and select source files.

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

class GenerIter.selector.Selector(searchpath=None, loadpath=None)
Bases: object

Represents the inventory of samples available for algorithmic processing.

Listing 1: Example constructor usage

from GenerIter.selector import Selector
Selector
selector = Selector(searchpath=pathstring,loadpath=loadfile)

insert(source, include=True)
Attempt to insert a source into the Selector configuration

load(lpath=None)
Load a previously-saved Selector configuration.

This method is uniquely additive in that it can be run repeatedly and any repeats are silently overwritten.

Parameters lpath (str) – path to the loadable JSON file containing a saved Selector state.

Listing 2: Example usage

from GenerIter.selector import Selector
Empty Selector
selector = Selector()
Load a previously-saved inventory file
selector.load(lpath=pathstring)

search(spath=None)
Walk a directory tree to add to the Selector configuration.

This method walks the specified directory tree and adds any discovered WAV files to its inventory. This
method is uniquely additive in that it can be run repeatedly across the different or the same trees. Unique-
ness is enforced during this process, so any repeats are silently overwritten. Any files encountered that do
not match the criteria for a WAV file are ignored.

6.1. GenerIter 37

GenerIter, Release 0.0.1

Parameters spath (str) – path to the root of the searchble directory tree.

Listing 3: Example usage

from GenerIter.selector import Selector
Empty Selector
selector = Selector()
Search a directory tree
selector.search(spath=pathstring)

selectRandom(key)
Method for getting a random selection from within a sub-category of the Selector.

This method will attempt to randomly choose an entry for the specified sub-category in the Selector.

It will fail if there are no true enabled entries in the sub-category or if the randomised function repeatedly
fails to find a true enabled entry because they are too sparse.

The number of attempts is limited by the size of the sub-category array.

Parameters key (str) – the name of a sub-category within the Selector’s structure.

Raises RDJParameterErr – if unable to select a return value.

subcats()
Get the list of top-level sub-categories in the Selector.

Returns [] (str)

Listing 4: Example usage

Enumerate the sub-categories
cats = selector.subcats()
for cat in cats:

Get the sub-category
category = selector[cat]

GenerIter.source module

Classes to represent references to GenerIter source files.

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

class GenerIter.source.FlacSource(dpath=None, dexist=False)
Bases: GenerIter.source.Source

Derived class specialised for FLAC source files.

This is a placeholder for future developments.

class GenerIter.source.Mp3Source(dpath=None, dexist=False)
Bases: GenerIter.source.Source

Derived class specialised for MP3 source files.

This is a placeholder for future developments.

class GenerIter.source.Source(path=None, exist=False)
Bases: object

Generic file source representation.

Parameters

38 Chapter 6. Reference

GenerIter, Release 0.0.1

• path (string) – string representation of the absolute or relative path to the target file.

• exist (boolean) – flag setting to test for the file’s existence when the reference object is
instantiated.

Raises GIResourceErr – if exist == True and the file does not exist.

property dname
Returns the name of the file’s directory.

exists()
Test if the file referred to exists.

Returns boolean

property ext
Returns the filename extension of the file

property fname
Returns the basename of the file.

isValidExtension(ref=None)
Tests if the filename extension matches an expected value.

Indicates whether the Source or derived object carries the same file extension, either as upper- or lower-
case forms.

Parameters ref (str) – the extension value to compare against.

Returns boolean

property path
Accessor to the value of full path value

property root
Returns the root name of the file.

class GenerIter.source.WavSource(dpath=None, dexist=False)
Bases: GenerIter.source.Source

Derived class specialised for WAV source files.

WAV is the only currently supported format.

GenerIter.util module

Useful unencapsulated functions to be reused across the domain.

Copyright 2020 Thomas Jackson Park & Jeremy Pavier

GenerIter.util.debug(astring)
Only print if in DEBUG mode.

Parameters astring (str) – any valid Python string

GenerIter.util.debug_except(inst)
Only print exception diagnostics if in DEBUG mode.

Parameters inst – any valid exception instance

GenerIter.util.jStr(struct)
Default JSON output human-readable string format.

The output string is formatted for ease of reading, with an indent value of 4 chars, using standard separators and
all fields sorted by name at their appropriate level.

6.1. GenerIter 39

GenerIter, Release 0.0.1

Parameters struct – arbitary Python iterable data structure i.e. list or dict.

Returns string

GenerIter.util.jsonSerial(obj)
JSON serializer for objects not serializable by default json code.

Currently supports datetime objects.

Parameters obj (any type) – arbitary Python object or type.

Returns string

Raises TypeError – if the object is not serializable.

GenerIter.util.localTimestamp(some_time=None, time_format=None)
Return a specified UTC time, formatted by the given string.

Parameters

• some_time – a datetime object (default None uses datetime.utcnow())

• time_format – format to covert a datetime object to string (default None uses
%Y%m%d%H%M%S)

Returns A timestamp string

GenerIter.util.mkdir_p(path)
Replicates mkdir -p functionality.

For a given path, any missing directories are created to ensure the full path exists

Parameters path (str) – absolute path to the target directory.

Raises OSError – if the path already exists as a file, or the target directory cannot be created
because of a permissions error.

GenerIter.util.nextPowerOf2(x)

GenerIter.util.shCmd(cspec, trace=False)
Executes a shell command and returns a string list of the output.

Parameters

• [] (cspec) – array of command line options and parameters.

• trace (boolean) – flag to set for text output if required (default : False)

Returns [] (str) if trace == True else None

Raises CalledProcessError – if the subprocess call fails

GenerIter.util.utf8(array)
Preserves byte strings, converts Unicode into UTF-8.

Parameters array (bytearray or str) – input array of bytes or chars

Returns UTF-8 encoded bytearray

40 Chapter 6. Reference

GenerIter, Release 0.0.1

Module contents

6.1. GenerIter 41

GenerIter, Release 0.0.1

42 Chapter 6. Reference

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

7.1 Contacts

7.1.1 Language and installation support

For support relating to Python and OS-specific installation issues, please write to Phil Cryer : phil at philcryer dot
com.

7.1.2 GenerIter support and information

See the GenerIter GitHub repository for source code.

Write to us : generiter at gmx dot com with any questions, bugs or suggestions relating to GenerIter.

43

https://github.com/GridPresence/GenerIter

GenerIter, Release 0.0.1

44 Chapter 7. Indices and tables

PYTHON MODULE INDEX

g
GenerIter, 41
GenerIter.app, 32
GenerIter.app.algorithm, 29
GenerIter.app.categorise, 30
GenerIter.app.clep_algorithm, 31
GenerIter.app.clep_categorise, 31
GenerIter.app.clep_generator, 31
GenerIter.app.clep_inventory, 31
GenerIter.app.clibase, 31
GenerIter.app.generator, 32
GenerIter.app.inventory, 32
GenerIter.config, 35
GenerIter.excepts, 35
GenerIter.factory, 36
GenerIter.process, 36
GenerIter.processor, 35
GenerIter.processor.Basic, 32
GenerIter.processor.Mix, 35
GenerIter.processor.Solo, 35
GenerIter.selector, 37
GenerIter.source, 38
GenerIter.util, 39

45

GenerIter, Release 0.0.1

46 Python Module Index

INDEX

A
alg_template (GenerIter.app.algorithm.Algorithm

attribute), 30
Algorithm (class in GenerIter.app.algorithm), 30

B
Basic (class in GenerIter.processor.Basic), 32
beatsbassdrone() (GenerIter.processor.Basic.Basic

method), 33
bracket() (GenerIter.process.Process method), 36
build_class() (GenerIter.app.algorithm.Algorithm

method), 30
build_lib() (GenerIter.app.algorithm.Algorithm

method), 30
build_method() (Gener-

Iter.app.algorithm.Algorithm method), 30

C
Categorise (class in GenerIter.app.categorise), 30
CLIBase (class in GenerIter.app.clibase), 31
Config (class in GenerIter.config), 35
configure() (GenerIter.factory.ProcessorFactory

method), 36
configure() (GenerIter.process.Process method), 36

D
deamplify() (GenerIter.process.Process method), 36
debug() (in module GenerIter.util), 39
debug_except() (in module GenerIter.util), 39
declick() (GenerIter.process.Process method), 36
default() (GenerIter.process.Process method), 37
dname() (GenerIter.source.Source property), 39

E
exists() (GenerIter.source.Source method), 39
ext() (GenerIter.source.Source property), 39

F
FlacSource (class in GenerIter.source), 38
fname() (GenerIter.source.Source property), 39

G
Generator (class in GenerIter.app.generator), 32
generic() (GenerIter.processor.Solo.Solo method), 35
GenerIter

module, 41
GenerIter.app

module, 32
GenerIter.app.algorithm

module, 29
GenerIter.app.categorise

module, 30
GenerIter.app.clep_algorithm

module, 31
GenerIter.app.clep_categorise

module, 31
GenerIter.app.clep_generator

module, 31
GenerIter.app.clep_inventory

module, 31
GenerIter.app.clibase

module, 31
GenerIter.app.generator

module, 32
GenerIter.app.inventory

module, 32
GenerIter.config

module, 35
GenerIter.excepts

module, 35
GenerIter.factory

module, 36
GenerIter.process

module, 36
GenerIter.processor

module, 35
GenerIter.processor.Basic

module, 32
GenerIter.processor.Mix

module, 35
GenerIter.processor.Solo

module, 35
GenerIter.selector

47

GenerIter, Release 0.0.1

module, 37
GenerIter.source

module, 38
GenerIter.util

module, 39
getsegment() (GenerIter.process.Process method),

37
getsegmentm() (GenerIter.process.Process method),

37
GIErr, 35
GINotImplementedErr, 35
GIParameterErr, 35
GIResourceErr, 36
GIValidationErr, 36
groove() (GenerIter.processor.Basic.Basic method),

33

I
insert() (GenerIter.selector.Selector method), 37
intwidth() (GenerIter.process.Process method), 37
Inventory (class in GenerIter.app.inventory), 32
isValidExtension() (GenerIter.source.Source

method), 39

J
jsonSerial() (in module GenerIter.util), 40
jStr() (in module GenerIter.util), 39

K
klass() (GenerIter.factory.ProcessorFactory prop-

erty), 36
klass_template (Gener-

Iter.app.algorithm.Algorithm attribute),
30

L
load() (GenerIter.config.Config method), 35
load() (GenerIter.selector.Selector method), 37
loadConfiguration() (Gener-

Iter.app.generator.Generator method), 32
loadSelections() (Gener-

Iter.app.generator.Generator method), 32
localTimestamp() (in module GenerIter.util), 40

M
main() (in module GenerIter.app.clep_algorithm), 31
main() (in module GenerIter.app.clep_categorise), 31
main() (in module GenerIter.app.clep_generator), 31
main() (in module GenerIter.app.clep_inventory), 31
method() (GenerIter.factory.ProcessorFactory prop-

erty), 36
Mix (class in GenerIter.processor.Mix), 35
mkdir_p() (in module GenerIter.util), 40
module

GenerIter, 41
GenerIter.app, 32
GenerIter.app.algorithm, 29
GenerIter.app.categorise, 30
GenerIter.app.clep_algorithm, 31
GenerIter.app.clep_categorise, 31
GenerIter.app.clep_generator, 31
GenerIter.app.clep_inventory, 31
GenerIter.app.clibase, 31
GenerIter.app.generator, 32
GenerIter.app.inventory, 32
GenerIter.config, 35
GenerIter.excepts, 35
GenerIter.factory, 36
GenerIter.process, 36
GenerIter.processor, 35
GenerIter.processor.Basic, 32
GenerIter.processor.Mix, 35
GenerIter.processor.Solo, 35
GenerIter.selector, 37
GenerIter.source, 38
GenerIter.util, 39

Mp3Source (class in GenerIter.source), 38
multitrack() (GenerIter.processor.Mix.Mix method),

35
multivoice_serial_ordered() (Gener-

Iter.processor.Solo.Solo method), 35

N
nextPowerOf2() (in module GenerIter.util), 40

P
padtolength() (GenerIter.process.Process method),

37
parseArguments() (Gener-

Iter.app.algorithm.Algorithm method), 30
parseArguments() (Gener-

Iter.app.categorise.Categorise method),
30

parseArguments() (GenerIter.app.clibase.CLIBase
method), 31

parseArguments() (Gener-
Iter.app.generator.Generator method), 32

parseArguments() (Gener-
Iter.app.inventory.Inventory method), 32

path() (GenerIter.source.Source property), 39
Process (class in GenerIter.process), 36
process() (GenerIter.app.algorithm.Algorithm

method), 30
process() (GenerIter.app.categorise.Categorise

method), 31
process() (GenerIter.app.clibase.CLIBase method),

31

48 Index

GenerIter, Release 0.0.1

process() (GenerIter.app.generator.Generator
method), 32

process() (GenerIter.app.inventory.Inventory
method), 32

process() (GenerIter.factory.ProcessorFactory
method), 36

ProcessorFactory (class in GenerIter.factory), 36

R
root() (GenerIter.source.Source property), 39

S
search() (GenerIter.selector.Selector method), 37
Selector (class in GenerIter.selector), 37
selectRandom() (GenerIter.selector.Selector

method), 38
setMethod() (GenerIter.factory.ProcessorFactory

method), 36
shCmd() (in module GenerIter.util), 40
Solo (class in GenerIter.processor.Solo), 35
SOLOMAP (GenerIter.processor.Solo.Solo attribute), 35
Source (class in GenerIter.source), 38
subcats() (GenerIter.config.Config method), 35
subcats() (GenerIter.selector.Selector method), 38
supported() (GenerIter.process.Process method), 37
SUPPORTED_FORMATS (GenerIter.process.Process at-

tribute), 36

T
threshold() (GenerIter.process.Process method), 37
TSHIRT (GenerIter.process.Process attribute), 36

U
utf8() (in module GenerIter.util), 40

V
voices() (GenerIter.processor.Basic.Basic method),

34
voices3() (GenerIter.processor.Basic.Basic method),

34
voices_shifted() (GenerIter.processor.Basic.Basic

method), 34

W
WavSource (class in GenerIter.source), 39
write() (GenerIter.process.Process method), 37

Index 49

	Preface
	A Few Words From One Creator Of The GenerIter

	Introduction
	Overview

	Installation
	Installing on macOS
	Installing on Debian-derived Linux
	Installing on Arch Linux
	Installing on Windows
	Advanced Installation Notes

	Tutorials
	Basic Workflow
	Advanced Grooving
	Roll Your Own Algorithm

	Console Apps
	genercat
	generinv
	generiter
	generalg

	Reference
	GenerIter

	Indices and tables
	Contacts

	Python Module Index
	Index

